VDG-MERKBLATT

Feinguß-Werkstoffe

W 60 August 2001

Inhalt:

		Seite
1	Definition und Geltungsbereich	1
2	Zweck	1
3	Allgemeine Eigenschaften	1
4	Stähle und stahlähnliche Eisen-, Nickel- und Cobalt-Basis-Legierungen	2
5	Leichtmetalle	9
6	Kupfer- und Kupfer-Basis-Legierungen	10
7	Frgänzende Hinweise und Daten.	11

1 Definition und Geltungsbereich

Die in vorliegendem Merkblatt genannten Werkstoffe gelten für Feinguß nach dem Modellausschmelz-Verfahren.

2 Zweck

- 2.1 Dieses Merkblatt nennt Metalle und Legierungen, die nach dem derzeitigen Stand der Technik feingegossen werden. Es gibt Anwendungs-Hinweise, nennt technologische Daten und bevorzugte Sorten, mit denen wirtschaftliche Vorteile erreicht werden.
- 2.2 Dieses Merkblatt enthält auch nichtgenormte, in der Anwendung jedoch bewährte Gußwerkstoffe. Hinweise auf noch geläufige frühere Bezeichnungen oder auf ggf. sinnvoll heranzuziehende Normen sind in Klammern gesetzt; normierte Knetlegierungen, die vergossen werden, sind mit "(G)" gekennzeichnet. Grundlage ist die Stahl-Eisen-Liste, 10. Auflage 1999.
- 2.3 In diesem Merkblatt sind einzelne Werkstoffe mit * (bevorzugte Sorte) gekennzeichnet, deren Anwendung aus technischen und/oder wirtschaftlichen Gründen vorteilhaft sein kann. Die Wahl gängiger Qualitäten verkürzt die Lieferzeiten und vermeidet Sonderschmelzen selten gegossener Werkstoffe. Grundsätzlich steht Abnehmern von Feinguß die volle Breite der Feingußwerkstoffe zur Auswahl.
- 2.4 Bei Sonderwerkstoffen ist gerade der Feingießer mit seinen relativ kleinen Schmelztiegeln in der Lage, auch seltene und "exotische" Legierungen zu erschmelzen, wenn sie für Versuche aus anwendungstechnischen Gründen oder auf Grund außergewöhnlicher Anforderungen vorgeschrieben sind.

3 Allgemeine Eigenschaften

Feingegossene Werkstücke erstarren nahezu quasiisotrop (ausgenommen bestimmte gerichtet erstarrte Superlegierungen). Sie weisen damit nicht das zeiliggerichtete Gefüge von Knetwerkstoffen mit unterschiedlichen Längs- und Querwerten auf, das z. B. durch Walzen, Schmieden, Pressen oder Ziehen entsteht.

Soite

Bei Feinguß kann deshalb in allen drei Dimensionen mit gleichen technologischen Werten gerechnet werden. Je nach Legierung wird Feinguß offen an Luft, unter Schutzgas oder im (Hoch-)Vakuum erschmolzen und gegossen.

- 3.1 Werkstoff und Gestalt eines Gußstückes sind nicht voneinander zu trennen. (Fein)gießgerechtes Gestalten erhöht den Gebrauchswert und damit die Wirtschaftlichkeit. Es gelten die Grundsätze für gießgerechtes Konstruieren, wie sie u. a. von der Zentrale für Gußverwendung veröffentlicht sind. Darüber hinaus entstehen optimale Lösungen durch die enge Zusammenarbeit zwischen Konstrukteur und Feingießer.
- 3.2 Die jeweilige Wärmebehandlung (auch Aushärten u. ä.) wird von der Art des Werkstoffs und der Anwendung bstimmt. Feingegossene Werkstoffe werden auf die gleiche Weise wärmebehandelt wie Knetwerkstoffe gleicher Zusammensetzung. Feinguß aus den Schwermetallen neigt dabei nur geringfügig zum Verziehen, was besonders Präzisions-Bearbeiten erleichtert.
- 3.3 Eine bei manchen Gießverfahren auftretende Gußhaut entsteht bei Feinguß im allgemeinen nicht. Dadurch ergeben sich saubere Oberflächen, die spanendes oder anderes Bearbeiten nicht beeinträchtigen.

Vom Fachausschuß "Feinguß" im VDG erstellte Richtlinie

VEREIN DEUTSCHER GIESSEREIFACHLEUTE

- 3.4 Die spanende Bearbeitung von Feinguß entspricht derjenigen von Knetwerkstoffen gleicher Zusammensetzung und Wärmebehandlung.
- 3.5 Für das Schweißen, Panzern und Löten gilt das gleiche. Die Feinguß-Oberfläche bedarf keiner vorherigen Bearbeitung. Schweißfasen, zu panzernde Partien und Sitze für aufzulötende Teile werden deshalb vorteilhaft mit- und angegossen.
- 3.6 Oberflächen-Veredeln ist nur von der Werkstoffart abhängig, kann also wie bei Knetwerkstoffen vorgenommen werden. Dabei empfiehlt es sich zu prüfen, ob bei kleineren Gußstücken mit der Wahl eines anderen, beständigeren Werkstoffes das Oberflächen-Veredeln überflüssig werden kann.
- 3.7 Modelle aus ein und demselben Spritzwerkzeug für gleiche Gußstücke aus verschiedenen Werkstoffen zu verwenden, ist oft erwünscht oder notwendig. So kann z. B. für Armaturen und Pumpenteile der Werkstoff optimal auf die Aggressivität des jeweiligen Mediums abgestimmt werden. Den Werkstoff problemlos umstellen zu können, ist auch dann von Vorteil, wenn höhere Beanspruchungen auftreten, als vorher bekannt oder vorhersehbar waren. Dann kann fast immer ein besser geeigneter Werkstoff gewählt werden ohne erneute Werkzeugkosten.

Die meist vernachlässigbaren Schwindmaß-Unterschiede erfordern oft nur bei Wechsel zwischen den Buntund Leichtmetallen, aber je nach Si-Gehalt auch bei Aluminium, das Werkzeug zu korrigieren oder es "nachsetzen" zu müssen.

4 Stähle und stahlähnliche Eisen-, Nickel- und Cobalt-Basis-Legierungen

4.1 Stähle für allgemeine Zwecke

Werkstoff- Nummer	Kurzname	Eigenschafts- angaben in	Wärme- behandlung	0,2%-Dehn- grenze R _{p 0,2} [N/mm²]	Zugfestigkeit R _m [N/mm²]	Bruch- dehnung A [%]	Anwendungs- hinweise
(1.0420)	GE 200 (GS-38)	DIN 17205 (DIN 1681)	normal- geglüht	<u>></u> 200	≥ 380	≥ 25	Für Bauteile aus Stahl
(1.0446)	GE 240 (GS-45)	DIN 17205 (DIN 1681)	normal- geglüht	≥ 230	≥ 450	≥ 22	ohne beson- dere Anfor- derungen

4.2 Einsatzstähle

Einsatzstähle weisen entsprechend gehärtet im Kern hohe Festigkeits- und Zähigkeitswerte sowie an der Oberfläche hohe Härte auf. Bei Wanddicken oberhalb ca. 5 mm verbessern Legierungsanteile die Vergütbarkeit. Einsatzstähle sind vor dem Einsatzhärten nach allen Verfahren gut schweißbar. Bei dem hochfesten Stahl 1.5860 sind jedoch Sondermaßnahmen beim Schweißen erforderlich.

Werkstoff- Nummer	Kurzname	Eigenschafts- angaben in	Wärmebe- handlungs- zustand	0,2%-Dehn- grenze R _{p 0,2} [N/mm²]	Zugfestigkeit R _m [N/mm²]	Bruch- dehnung A [%]	Härte der Eins Schicht HRC	Anwendungs- Hinweise
1.1142	GC 16E (GS-CK 16)	EN 10084	einsatz- gehärtet	<u>></u> 350	≥ 500	≥ 10	59 bis 65	Bauteile für allge- meine Zwecke
1.5860	(G)14NiCr18	ww		<u>≥</u> 980	<u>≥</u> 1230	<u>></u> 5		Einsatzgehärtet für Bauteile
1.5921 (1.5919)	G15CrNi6 * (15CrNi6)	EN 10084 (DIN 1652-3) (DIN 1654-3)		≥ 650	≥ 850	≥ 7		hoher Ober- flächenhärte und Verschleißfestig- keit, z. B.
1.7015	(G)15Cr3			<u>≥</u> 510	<u>></u> 790	≥ 8		Schaltklinken und -räder, Nocken,
1.7132 (1.7131)	G16MnCr5 (16 MnCr5)	(EN 10084) (DIN 1652-3) (DIN 1654-3)		≥ 600	≥ 800	≥ 7		Druckstücke, Klemmplatten, Hebel, Sport- und Jagdwaffenteile
1.7242	(G)16CrMo4 *		einsatz- gehärtet	≥ 600	≥ 800	≥ 7	59 bis 65	

^{* =} bevorzugte Sorte

4.3 Nitrierstähle

Der Feingießer bietet CrMoV-legierte Nitrierstähle an, weil sich Aluminium-legierte offen nur schlecht gießen lassen. Die CrMoV-legierten sind auf hohe Festigkeiten zu vergüten und nehmen nitriert bei geringstem Härte-

verzug an den Oberflächen über 750 bzw. über 900 HV an. Der GX 38CrMoV5-1 ist ein Mehrbereichsstahl, der gleichermaßen als Warmarbeitsstahl oder als hochfester Baustahl verwendet wird.

Werkstoff- Nummer	Kurzname	Eigenschafts- angaben in	Wärmebe- handlungs- zustand	0,2%-Dehn- grenze R _{p 0,2} [N/mm²]	Zugfestigkeit R _m [N/mm²]	Bruch- dehnung A [%]	Härtear Nitrier- schicht HV	nnahme im Kern HRC	Anwendungs- Hinweise
1.2346	GX38 CrMoV5-1 * (X38 CrMoV5-1)	(DIN 17350) (SE 201)	vergütet	≥ 700	≥ 900	≥ 8	≥ 900	≈ 50	Für Bauteile hoher Festigkeit und hoher
1.8519	(G)31CrMoV9	(DIN 17211)	vergütet	≥ 800	<u>></u> 980	≥ 7	≥ 750	≈ 40	Oberflächenhärte

^{* =} bevorzugte Sorte

4.4 Vergütungsstähle

Vergütungsstähle sind Werkstoffe mit Kohlenstoffgehalten von ca. 0,2 bis ca. 0,6 %, deren Gebrauchseigenschaften durch Vergüten (Härten und Anlassen) bestimmt werden. Stähle mit ≥ 0,4 % Kohlenstoff sind oberflächenhärtbar.

Die erreichbare Härte wird durch den Kohlenstoffgehalt bestimmt; die Legierungselemente bestimmen die Durchvergütbarkeit.

Eventuell auftretende Randabkohlung kann durch gezielte Wärmebehandlung ausgeglichen werden.

Werkstoff- Nummer	Kurzname	Eigenschafts- angaben in	Wärmebe- handlungs- zustand	0,2%-Dehn- grenze R _{p 0,2} [N/mm²]	Zugfestigkeit R _m [N/mm²]	Bruch- dehnung A, [%]	Anwendungs- Hinweise	
1.1196	GC45E * (CK 45)	SEW 835	vergütet	≥ 450	≥ 600	14	Für Bauteile ohne be- sondere Anforderung	
(1.0558)	GE 300 (GS 60)	DIN 17205	vergütet	≥ 450	≥ 600	» 10	und für Bauteile be- stimmter Festigkeit bei guter Zähigkeit,	
1.1221	(G)C60E (CK 60)		vergütet	≥ 500	≥ 740	» 10	z. B. in Büro-, Druck-, Schuh-, Textil- und Werkzeugmaschinen	
1.7218	GS-25 CrMo 4*	DIN 17205	vergütet	680 bis 830	550 bis 700	16	Für Bauteile mit bestimmter Vergüte- festigkeit bei guter Zähigkeit, z. B. für Schnellverschlüsse,	
1.7220	GS-34 CrMo 4	DIN 17205	vergütet	510 bis 760	650 bis 800	10		
1.7231 (1.7225)	G42 CrMo 4 *	DIN 17205 SEW 835	vergütet	≥ 750	700 bis 850	10	Jagd- und Sport- waffen, Sicherheits-, Flugkörper- und	
1.8160	G 51CrV4		vergütet	≥ 800	1000 bis 1200	≥ 6	Zellenbauteile	

^{* =} bevorzugte Sorte

4.5 Hochfeste ausscheidungshärtende Stähle

Die hochfesten ausscheidungshärtenden Stähle stellen eine Sondergruppe dar und werden vornehmlich für hochbeanspruchte Bauteile in der Flugzeugindustrie eingesetzt.

In den Werkstoff-Leistungsblättern der Deutschen Luftfahrt sind weitere Angaben zu Einsatz und Konstruktionsmerkmalen genannt.

Bei Auswahl und Einsatz dieser Werkstoffgruppe ist Rücksprache mit der Gießerei zu empfehlen.

Werkstoff- Nummer	Kurzname	Eigenschafts- angaben in	Wärmebe- handlungs- zustand¹)	0,2%-Dehn- grenze R _{p 0,2} [N/mm²]	Zugfestigkeit R _m [N/mm²]	Bruch- dehnung A [%]	Härte HRC	Anwendungs- Hinweise
(1.4549)	(GX4CrNiCuNb16-4) *	LW	WL 1.4549.4 WL 1.4549.5 WL 1.4549.6	≥ 830 ≥ 900 ≥ 1100	≥ 900 ≥ 1030 ≥ 1240	8 8 8 6 6	≥ 30 ≥ 34 ≥ 40	Für vornehm- lich hochbean- spruchte Bau-
1.6351	GX2NiCoMoTi17-10	LW	WL 1.6351.4 ²⁾ WL 1.6351.4 ³⁾	≥ 1450 ≥ 1450	≥ 1600 ≥ 1600	≥ 4 ≥ 3	(52) (52)	teile in der Flugzeugindu- strie

^{* =} bevorzugte Sorte

- 1) Homogenisiert, lösungsgeglüht und ausgehärtet
- 2) Wanddicke ≤ 25 mm
- 3) Wanddicke > 25 bis 50 mm

4.6 Werkzeugstähle

Obwohl Werkstoffstähle gut feingießbar sind, sind sie besonders sorgfältig wärmezubehandeln.

Eventuell auftretende Randabkohlung kann durch gezielte Wärmebehandlung ausgeglichen werden. Scharfe schneidende Werkzeugkanten können nicht (an-) gegossen werden; sie sind nur spanend zu fertigen.

Am Gußstück ist deshalb ein entsprechendes Bearbeitungsaufmaß vorzusehen.

Bei den in der Tabelle genannten Werkzeugstählen sind die beiden Sorten GX165CrMoV12 und GX90CrCoMoV17 bedingt korrosionsbeständig.

Werkstoff- Nummer	Kurzname	Eigenschafts- angaben in	Zugfestig- keit R _m [N/mm²]	Härte HB	Härte Annahme HRC	Arbeits- härte HRC	Anwendungs- Hinweise
1.1730	(G)C 45 W	DIN 17350	≤ 700	≤ 207	≈ 56	44 bis 56	Bauteile und Werkzeuge mit gutem Widerstand
1.1740	(G)C 60 W*	(DIN 17350)	≤ 750		≈ 58	48 bis 58	gegen Schlag, Verschleiß und Druck. Handwerk- zeuge; Schäfte und Körper an Verbundwerkzeugen
1.2346 (1.2343)	GX38CrMoV5-1 * (X38CrMoV5-1)	(DIN 17350) (SE 201)	≤ 900	≤ 230	≈ 50	35 bis 46	Gesenke, Pressen, Druckgießformen
1.2067	(G)102Cr6	(DIN 17350)	≤ 850	≤ 223	≈ 65	58 bis 65	Teile mit hoher Hertzscher Pressung, Kugelführungen
1.2419	(G)105WCr6 *	(DIN 17350)	≤ 900	≤ 229	≈ 64	53 bis 64	Messerstahl zum Schneiden von Papier, Textilien und Kunststoffen; für Meßzeuge und spanlos formende Werkzeuge
1.2562	(G)142 WV 13 *		≤ 950		≈ 65	57 bis 65	Schloßstahl für Rundstrick- und Rundwirk-Maschinen
1.2602	GX165CrMoV12 *	(DIN 17350)	≤.900		≈ 63	57 bis 63	Stahl für Blech-, Draht- und Fadenführungen, Schnitt- und Prägewerkzeuge, Buchstabenstempel, Werk- zeuge zum Formen keramischer Massen, Schloßstahl
1.3343	(G)S 6-5-2	(DIN 17350)	≤ 1000	≤ 240 bis 300	≈ 65	60 bis 65	Schnellarbeitsstähle für Spanbrecher, Nutenziehmesser, Köpfe von Extruderschnecken
1.4535	(G)X90CrCoMoV17		≤ 950		≈ 59 (≥60)	50 bis 59 (≤ 62)	Rostträger Messerstahl zum Zerkleinem von Lebensmitteln, für medizinische Instrumente, Pfannen und Schneiden von Waagen (Klammerwerte: tiefkühgehärtet)
	GS-85CrVW4		≤ 850		≈ 65	58 bis 62	Mehrbereichs-Werkzeugstahl

^{* =} bevorzugte Sorte

4.7 Hartlegierungen auf Cobaltbasis

Hartlegierungen sind Stellite, welche nicht wärmebehandelt werden. Sie sind verschleißfest, nicht mag-

netisierbar und hitzebeständig bis rund 1000°C. Ferner sind sie korrosions- und meerwasserbeständig und aufgrund dessen für viele Zwecke einsetzbar

Werkstoff- Nummer	Kurzname	Härte HRC	Dichte g/cm³	Verwendung
2.4905	G-CoCr30W12	50 - 55	8,5	für hochverschleißfeste Armaturenteile und Gleitringe etc. korrosions- und meerwasserbeständig
2.4907	G-CoCr33W18	55 - 59	9,0	Armaturen und Spezialmesser
2.4723	G-CoCr29Mo5	28 - 32	8,1	Medizinalbereich gem. ISO 5832/IV

4.8 Nichtrostende Stähle

4.8.1 Martensitische Stähle

Nach EN 10283 werden diese Stähle nichtrostend genannt. Sie sind jedoch treffender als "rostträge" zu bezeichnen. Die Stähle sind lediglich gegenüber vielen Medien korrosionsbeständig. Sie widerstehen Dampf, Feuchte, oxidierenden Salzlösungen und Säuren geringer Konzentration. Ihre Beständigkeit steigt mit den Chromgehalten, der Härte und der Oberflächengüte, erzielt z. B. durch Vergüten, Schleifen, Polieren o. ä. Diese Chromstähle sind magnetisierbar und bedingt warmfest sowie bedingt hitzebeständig bis etwa 550° C.

Werkstoff- Nummer	Kurzname	Eigen- schafts- angaben in	Wärmebe- handlungs- zustand	0,2 %- Dehn- grenze R _{p 0,2} [N/mm ²]	Zugfestig- keit R _m [N/mm²]	Bruch- dehnung A _o [%]	Anwendungs- Hinweise
1.4027	GX20Cr14	SEW 410-98 (DIN 17445)	vergütet	<u>≥</u> 440	590 bis 790	≈ 12	Für Teile, die gegen Luftfeuchte, Dampf, Wasser und häufiges
1.4059	GX22CrNi17 *	SEW 410-98 (DIN 17445)	vergütet	≥ 590	780 bis 980	≈ 4	Handhaben beständig sein müssen
1.4122	GX35CrMo17 *	DIN 17442	vergütet	≥ 600	≤ 950	≈ 5	Teile für optische, medizin. und Meß- geräte bei Temperaturen < 500°C
1.4317 (1.4313)	GX4CrNi 13-4 (G)X3CrNiMo13-4	EN 10088 EN 10213-2 SEW 520	vergütet	≥ 550	760 bis 960	15	Druckbehälter, Turbinenbau
1.4540	GX4CrNiCuNb 16-4		ausgehärtet	≥ 980	1200 bis 1400	≈ 6	Korrosions- und meerwasserbeständige Teile hoher Festigkeit, wie Verdichterräder

^{* =} bevorzugte Sorte

4.8.2 Austenitische Stähle

Austenitische Stähle sind je nach Legierungstyp rost-, säure-, hitze- und zunderbeständig bis etwa 900°C (Versprödungsbereich beachten!).

Sie weisen hohe Duktilitätswerte auf und sind kaltzäh bis etwa-190°C. Als Austenite sind sie nicht härt- oder vergütbar und nicht oder nur schwach magnetisierbar. Da sie kaltverfestigen, sind sie schwieriger zu bearbeiten als andere Stähle gleicher Festigkeit. In Partien, die z. B. durch Schnittkräfte, Schlag oder Biegung kaltverfestigt werden, wandelt das Gefüge um und wird schwach magnetisierbar. Das beeinträchtigt jedoch die Korrosionsbeständigkeit nicht, die nur vom Legierungstyp und gegebenenfalls der Oberflächenbehandlung bestimmt wird.

Die Schweißbarkeit ist gut. Bei artgleichen Zusätzen sind die Stabilisatoren zu beachten. Austenite werden zur Errei-

chung der verbesserten Korrosionseigenschaften mit Tantal/Niob stabilisiert. Eine Folge hiervon ist die verbesserte Gieß- und Schweißbarkeit ohne nachfolgende Wärmebehandlung. Nicht stabilisierte Stähle lassen sich gut hochglanzpolieren. Sie werden deshalb auch für sichtbare Armaturen, z. B. an lebensmittelverarbeitenden Maschinen verwendet.

Bei verschiedenartigem, nicht vorhersehbarem oder wechselndem chemischen Angriff durch Säuren oder Laugen hat sich der Werkstoff Nummer 1.4581 bewährt, z. B. für Pumpen, Armaturen u. ä. Wird außer hoher Korrosionsbeständigkeit auch hohe Härte und/oder Verschleißfestigkeit gefordert, z. B. an Sitzen von Ventilen oder Schiebern in Armaturen, dann sind Hartlegierungen, Punkt 4.7, zu verwenden. Bei sehr hoher dynamischer Belastung und daraus resultierender Kriechgefahr können die austenitischen Stähle nicht verwendet werden. Dann sind vakuumerschmolzene Nickel- oder Cobalt-Basis-Legierungen zu verwenden.

Werkstoff- Nummer	Kurzname	Eigen- schafts- angaben in	Wärmebe- handlungs- zustand	0,2%- Dehngrenze R _{p 0,2} [N/mm²]	Zugfestig- keit R _m [N/mm²]	Bruch- dehnung A _o [%]	Anwendungs- Hinweise
1.3955	GX12CrNi18-11	SEW 395 WW	lösungs- geglüht	≥ 180	≥ 440 - 590	20	nicht magnetisierbar
1.4308	GX5CrNi19-10 *	EN 10213-4			440 bis 640	30	Teile für Pumpen, Zentrifugen,
1.4408	GX5CrNiMo19-11-2	EN 10213-4	7			30	Rührwerke, Ventile und Armaturen der chemischen,
1.4448	GX6CrNiMo17-13]			20	Textil-, Kunstseide-, Zellstoff- und Kali-Industrie sowie für
1.4500	GX7NiCrMoCuNb25-20					20	Anlagen der Luft-, Stickstoff- und Sauerstoff-Verflüssigung,
1.4552	GX5CrNiNb19-11	DIN EN 10213-4				25	Teile für Maschinen, die Lebensmittel, Getränke,
1.4581	GX5CrNiMoNb19-11-2 *	DIN EN 10213-4; LW	lösungs- geglüht	<u>≥</u> 180	440 bis 640	25	Genußmittel, Gewürze und Arzneien verarbeiten

4.9 Hochkorrosionsbeständige Legierungen

In Fällen, in denen die Korrosionsbeständigkeit der austenitischen Stähle nicht ausreicht, werden Nickel- und Cobalt-Basis-Legierungen verwendet, von denen hier je ein Typ als bevorzugte Sorte genannt ist. Beide haben ein austenitisches Grundgefüge, sind nicht magnetisierbar

und noch etwas schwieriger zu bearbeiten als die austenitischen Stähle.

Um Werkstoffe dieser Art optimal auszuwählen, empfiehlt es sich sehr, daß sich Feinguß-Anwender und Feingießer detailliert abstimmen. Das gilt besonders für Einsatzfälle im humanmedizinischen Bereich.

Werkstoff- Nummer	Kurzname	Wärmebe- handlungs- zustand	0,2%- Dehn- grenze R _{p 0,2} [N/mm ²]	Zugfestig- keit R _m [N/mm²]	Bruch- dehnung A _o [%]	Anwendungs- Hinweise
2.4839	(G)NiCr20Mo15	lösungs- geglüht	≥ 280	500 bis 700	≥ 20	Armaturen-, Pumpen-, Rührwerks- und Aggregate-Teile für Chemie- Anlagen und Meerwasserentsalzung
2.4723	G-CoCr29Mo *	Gußzustand	<u>≥</u> 450	600 bis 690	≥ 3	Biokompatible Implantate, wie Hüft- und Kniegelenk-Endoprothesen, Dentalguß

^{* =} bevorzugte Sorte

4.10 Hitze- und zunderbeständige Stähle

Für Temperaturen über 500° C sind hitzebeständige Stähle erforderlich. Bedingt durch ihre hohen Chromgehalte sind sie rostträge und korrosionsbeständig (auch) gegen verzundernde heiße Gase.

Begrenzt können auch die nichtrostenden Stähle als hitzebeständige verwendet werden. Bei allen austenitischen ist jedoch zu beachten, daß sie in bestimmten Temperaturbereichen verspröden (können).

Werkstoff- Nummer	Kurzname	Eigen- schafts- angaben in	Härte HB 30	Zugfestig- keit R _m (N/mm²)	Bruch- dehnung A ₀ [%]	Geeignet für Betriebs-Tempe raturen von bis °C	
1.4729	GX40CrSi13 *	DIN 17465	200 bis 300	500 bis 800	≈ 4	- 850	Bauteile für Öfen, Apparate und statio-
1.4848	GX40CrNiSi 25-20 *	DIN 17465; SEW 595	≥ 230	≥ 440	6	900 1150	näre Gasturbinen
1.4880	GX45CrNiW 18-9		185 bis 210	640 bis 750	≥ 18	600 800	Ventilstahl für Verbren- nungs-Motoren u.ä.

4.11 Hochwarmfeste Stähle und Legierungen, offen erschmolzen

Diese offen erschmolzenen hochwarmfesten Werkstoffe sind je nach Legierungstyp gegen heiße Medien (Dämpfe,

Gase) beständig. Werte für Zeitdehngrenzen und Zeitstandfestigkeiten werden auf Anfrage vom jeweiligen Feingießer genannt.

Werkstoff- Nummer	Kurzname	Eigen- schaftsan- gaben in	Wärme- behandlungs- zustand	Zugfestig- keit R _m (N/mm²)	Bruch- dehnung A _o [%]	0,2%-Dehngrenze R _{p 0,2} in N/mm² bei Temperaturen in °C 500 800 900		ei in °C	Anwendungs- Hinweise
-	GX20CrCoMo12 2 1	-	vergütet	785 bis 985	≈ 12	340	-	-	Bauteile für Turbinen, Brennerein- sätze, Vorkammem, Strebenhalter
1.4957	GX15CrNiCo21-20-20	LW	ausgelagert	650 bis 850	≈ 10	250	160	100	Leitschaufeln, Nachbrennerteile, Vorkammern
2.4682	G-CoCr25NiW	WL	Gußzustand	600 bis 800	≈ 4	245	170	-	Turbolader- und Gasturbinen-Teile
2.4989	G-CoCr20Ni20W		Gußzustand	600 bis 800	≈ 4	265	-	-	Leitschaufeln und -ringe

^{* =} bevorzugte Sorte

4.12 Hochwarmfeste Ni-Basiswerkstoffe, vakuumerschmolzen

Ursprünglich sind diese Hochwarmfesten für Gasturbinenschaufeln in Flugtriebwerken entwickelt worden. Inzwischen werden sie auch für Rotoren von Abgasturboladern und Schaufeln von stationären und beweglichen Frischgasturbinen mit Erfolg eingesetzt. Jedoch auch bei niedrigen Betriebstemperaturen empfehlen sich diese Legierungen: für hochkorrosionsbeständige, dynamisch und statisch hochbelastete Konstruktionsteile, an deren Kriechfestigkeit hohe Anforderungen gestellt werden. Damit bieten diese Hochwarmfesten bis in den kaltzähen Bereich (-190° C) die Voraussetzung, Bauteile kleiner, mit geringeren Wanddicken und damit leichter, also wirtschaftlicher zu konstruieren und zu bauen.

Die erforderliche dynamische Belastbarkeit bei hohen Temperaturen wird bei diesen Nickel-Basis-Legierungen durch Ausscheidungshärten mittels Aluminium, Titan u. a. erreicht. Wegen deren Affinität zu Sauerstoff muß unter Vakkum, Schutzgas u. ä. geschmolzen und gegossen werden

Als Austenite sind diese hochwarmfesten Legierungen kaltverfestigend und dementsprechend schwierig zu bearbeiten.

Die in der Tabelle genannten Daten weisen auf die Anwendungen hin. Gleiches gilt für die (stengel- und) monokristallin erstarrten Triebwerkschaufeln wie z. B.:

- (SRR 99) für Flugzeug-Triebwerke oder
- (CMSX-6) für Hubschrauber-Triebwerke, deren hervorragende Standzeiten den Aufwand rechtfertigen, den sie erfordern.

Werkstoff- Nummer	Kurzname	Eigen- schafts- angaben in	Wärme- behandlungs- zustand	Zugfestig- keit R _m (N/mm²)	Bruch- dehnung A _o [%]	0,2%-Dehngrenze R _{p 0,2} in N/mm² bei Temperaturen in °C 700 800 900 1000	Anwendungs- Hinweise
2.4670	G-NiCr13Al6MoNb *	WL 2.4670	Gußzustand	800 bis 1000	≈ 5	670 620 400 250	Gasturbinen- Schaufeln.
2.4674	G-NiCo15Cr10AlTiMo	WL 2.4674	Gußzustand	850 bis 1050	≈ 3	680 620 450 230	-Räder und
2.4676	G-NiCo10W10CrAINb	LW	geglüht	950 bis 1150	≈ 3	720 570 420 210	-Leitringe, Rotoren für Abgasturbolader
-	G-NiCr16Co8AlTi *		lösungsgeglüht und ausgelagert	950 bis 1150	≈ 3	740 630 420 250	Teile für stationäre Gasturbinen

^{* =} bevorzugte Sorte

4.13 Gußeisen

Gußeisen mit Lamellengraphit wird verwendet, wenn gute Gleit- und Notlauf-Eigenschaften oder ein hohes Dämpfungsvermögen gegenüber Schwingungen gefordert werden (EN 1561).

Aus Gußeisen mit Kugelgraphit werden solche Bauteile feingegossen, an die neben Gleit-, Notlauf- und/oder Dämpfungseigenschaften außerdem höhere Anforderungen an die Festigkeit und Zähigkeit gestellt werden (EN 1563).

Wird zusätzlich zu den genannten typischen Eigenschaf-

ten von unlegiertem Gußeisen auch Korrrosionsbeständigkeit gefordert, dann kommt das austenitische Gußeisen GGL-NiCuCr 1562 zum Einsatz. Es ist nichtmagnetisierbar und hat eine hohe Wärmeausdehnung.

Das austenitische Gußeisen GGL-NiCr 35 2 wird vorteilhaft bei thermischen Beanspruchungen verwendet. Es zeichnet sich durch sehr geringe Wärmeausdehnung aus und ist thermoschockbeständig bis 700°C. Die hier nicht einzeln genannten carbidreichen, legierten Sondergußeisen widerstehen je nach Legierungstyp Verschleiß, Hitze und/oder korrosivem Angriff.

Ein Preisvorteil zu vergleichbaren Stahlsorten besteht, da meistens auf Wärmebehandlung verzichtet wird.

Werkstoff- Nummer	Kurzname	Wärme- behand zustand	Elastizitäts- Modul E kN/mm²	Härte HB 30	Zugfestig- keit R _m (N/mm²)	Bruch- dehn. A [%]	Anwendungs- Hinweise
EN-JL 1040	EN-GJL-250 (GG-25)	Guß- zustand	103 bis 118	140 bis 240	≈ 250	-	Für Teile mit Notlauf-Eigen- schaften, wie Statoren, Lauf- büchsen und Lagerbuchsen
0.6655	GGL-NiCuCr15 6 2	Guß- zustand	83 bis 103	120 bis 215	≈ 180	≈ 5	Wie EN-GJL-250, bei zusätz- lichen Anforderungen an die Korrosionsbeständigkeit gegen- über Alkalien, verdünnten Säuren, Meerwasser und Salzlösungen
0.6678	GGL-NiCr 35 2	Guß- zustand	≈ 72	120 bis 170	≈ 160	≈ 1	Für Teile mit geringer Wärme- ausdehnung; themoschock- beständig bis etwa 700 °C
EN-JS1060	EN-GJS-600-3 (GGG-60)	Guß- zustand	≈ 160	≈ 150 (wanddicken- abhängig)	min. 3	min. 3	Bei höheren Anforderungen an Festigkeit und Zähigkeit

5 Leichtmetalle

Die Leichtmetalle sind nicht magnetisierbar. Sie lassen sich leicht bearbeiten, gut schweißen und anodisieren, haben gute Gieß- und Korrosionseigenschaften.

5.1 Aluminium-Basis-Legierungen

Aluminium-Feinguß wird insbesondere in der Luft- und Raumfahrt, der Elektronik- und Optikindustrie sowie im Sonderapparatebau verwendet, ebenfalls für hochbeanspruchte Gußteile im Motorrennsport sowie hochfeste Strukturbauteile für Flügel und Zelle in Leichtbauweise für Luft- und Raumfahrt. Elektronikgehäuse, bei denen die Sitze der Leiterplatteneinschübe, Nuten für Dichtsysteme,

Durchbrüche in allen Richtungen, einschließlich der eingegossenen Beschriftungen, auf Fertigmaß gegossen sind. Komplexe Kanäle mit kleinen Durchmessern für hydraulische Anwendungen können unmittelbar unter Verwendung von keramischen Kernen oder aber durch Eingießen von metallischen Rohren in das Gußteil integriert werden.

Ebenso können metallische Buchsen als Eingußteil vorgesehen werden.

Aufgrund ihrer guten Gießeigenschaften und ihres breiten Anwendunsspektrums können Aluminium-Silicium-Feingußteile im Vergleich zu anderen Aluminiumlegierungen kostengünstiger hergestellt werden.

Werkstoff- Nummer	Kurzname	Eigen- schafts- angaben in	Wärmebe- handlungs- zustand	0,2%-Dehn- grenze R _{p 0,2} [N/mm²]	Zugfestigkeit R _m [N/mm²]	Bruch- dehnung A [%]	Schweiß- barkeit	Anwendungs- Hinweise	
EN AC-42100	EN AC-AlSi7Mg0,3	DIN EN 1706	wa	200	260	3	sehr gut	Standardlegierung mit aus-	
AL-C42101	EN-AISi7Mg0,3	(EN 3123) (A 356)	wa	180 bis 210	240 bis 270	2 bis 4		gezeichneter Gießbarkeit für Teile von Elektronik-, Radar- und Elektrogeräten, wie z. B. Gehäuse, Hohl- leiter und Chassis, ferner für Flugkörper- und Zellen- bauteile; meerwasserbe- ständig	
EN AC-21000	EN AC-AICu4TiMg	DIN EN 1706	ka	220	300	5	ausreichend	Gußstücke mit hoher Festigkeit	
EN AC-42200	EN AC-AlSi7Mg0,6	DIN EN 1706	wa	240	290	2	sehr gut	wie EN AC-AlSi7Mg0,3,	
Al-C42201	EN AlSi7Mg0,6	(EN 3124)	wa	240 bis 275	310 bis 345	3 bis 5		jedoch höhere Festigkeit. Die Festigkeitsstufen sind abhängig von Teilgeome- trie und angewandten (Sonder-) Gießverfahren; meerwasserbeständig	
3.1754	G-AlCu5Ni1,5	(RR 350)	3.1754.6 wa	150 bis 180	190 bis 215	≈ l	bedingt schweißbar	gute Warmfestigkeit bis 350 °C, Getriebegehäuse, Lufteinlaßstutzen, geringe Korrosionsbeständigkeit, Gießbarkeit eingeschränkt	
			3.1754.9 (wa entspannt)	130	180	1			
3.2134 Teil 1	G-AlSi5Cu1,3Mg	(C 355)	3.2134.6 (wa)	150 bis 170	190 bis 220	0,5 bis 2	gut .	Anwendungstemperatur bis 150 °C	
			3.2134.9 (Stabilisierungs- glühung)	90 bis 120	150 bis 180	1 bis 2		Armaturen, Pumpen und Getriebegehäuse	
			3.2134.6 wa	260	280	≈ 0,5		hergestellt in Sondergießverfahren	
EN AC-51100	EN AC-AIMg3 (a)	DIN EN 1706	F	≈ 80	≈ 140	≈ 3		Hervorragende Korro- sionsbeständigkeit gegen- über Meerwasser, schwa- chen alkalischen Medien und Witterungseinflüssen, für Gußstücke mit dekora- tiver Oberfläche	
3.3241.63	GF-AIMg3Si	(DIN 1725)	wa	≈ 120	≈ 180	≈ 2	ausreichend	wie ENAC-AlMg3(a), jedoch mit höherer Festig- keit, gute Korrosionsbe- ständigkeit, besser gießbar und warmfest	

5.2 Titan- und Titan-Basis-Legierungen

Titan weist ein spezifisches Gewicht von 4,5 g/cm³ aus und ist den Leichtmetallen zugeordnet.

Titan-/Titan-Legierungen werden in der Regel im Lichtbogenschmelzofen (VAR vacuum arc remelting process) unter Vakuum vergossen. Aufgrund der Reaktivität des Metalles während des Gießvorganges werden besonders reaktionsarme Sonderformstoffe verwendet. Titan findet überall dort Anwendung, wo hohe statische, dynamsiche oder chemische Beanspruchung stattfindet. Tital hat ein günstiges Verhältnis von Festigkeit zu Gewicht. Das zusätzlich angewendete HIP-Verfahren (Heißisostatisches Pressen) garantiert höchste Homogenität des Gefüges und somit bessere statische und dynamische Eigenschaften. Der Titan-Feinguß ist für den Einsatz von höchstbeanspruchten Konstruktionen sehr gut geeignet. Titan-Feingußteile kommen zur Anwendung in der chemischen Industrie, der Lebensmittelindustrie, bei biokompatiblen Implantaten von Endoprothesen in der Humanmedizin.

Werk- stoff- Nummer	Kurzname	Eigen- schafts- angaben in	Wärmebe- handlungs- zustand	0.2%-Dehn- grenze R _{p.0,2} [N/mm ²]	Zugfestig- keit R _m [N/mm²]	Bruch- dehnung A [%]	Schweiß- barkeit	Anwendungs- Hinweise	
3.7031 *	G-Ti99,4 G-Ti2	DIN 17865	Gußzustand oder entspannt oder HIP	≥ 280	<u>≥</u> 350	≈ 15	sehr gut	Chemische Apparate, Säurepumpen-, Arma- turen- und Verdichter-	
3.7032	G-Ti99,4 Pd G-Ti2 Pd	DIN 17865	Gußzustand oder entspannt oder HIP	<u>≥</u> 280	≥ 350	≈ 15 _.	sehr gut	teile; Bauteile für künst- liche Horizonte und Platt- formen; Konstruktions- Elemente für fliegende Apparate und Renn- wagen; Implantate für die Humanmedizin; hoch- beanspruchte Luftfahrt- teile, Triebwerksgehäu- se, Kompressorenlauf- räder	
3.7161 *	G-TIAI6V4	DIN 17865 EN 3352 WL 3.7264	entspannt oder HIP	<u>></u> 815	≥ 880	≈ 5	gut		

6 Kupfer und Kupfer-Basis-Legierungen

Feingußteile aus Kupfer und Kupfer-Basis-Legierungen werden bevorzugt von der Elektro- und Elektronikindustrie verwendet. Im Bestreben, kleiner und leichter zu bauen, trifft das besonders auf komplizierte und/oder hinterschnittene Bauteile zu, die auf andere Weise nicht oder nicht wirtschaftlich gegossen oder gepreßt werden können.

Aushebeschrägen sind nicht erforderlich, viele Einzelheiten, wie Kartenführungen, Durchbrüche, Kabeldurchtritte

und Löcher können gratfrei mit- und angegossen werden. Der günstigen technologischen Eigenschaften wegen gilt das auch für Textilmaschinen- und Armaturenteile.

Zudem sind Kupfer-Basis-Legierungen wegen ihrer guten Gleiteigenschaften und ihrer Korrosionsbeständigkeit für Bauteile geeignet, die reibendem Verschleiß und/oder chemischem Angriff, z. B. durch Meerwasser, ausgesetzt sind. So wird G-CuZn15Si4 beispielsweise für Kompaßteile verwendet, bei denen es auf völlige Unmagnetisierbarkeit ankommt.

Werkstoff- Nummer	Kurzname	Eigen- schafts- angaben in	Wärmebe- handlungs- zustand	0,2%-Dehn- grenze R _{p0,2} [N/mm²]	Zugfestig- keit R _m [N/mm²]	Bruch- dehnung A [%]	Leitfähig- keit thermisch (W/K * m)	Leitfähig- keit elektrisch (m/Ω * mm²)	Anwendungs- Hinweise
2.0060	G-Cu L 45		Gußzustand	≥ 50	≥ 165	≈ 25	≈ 293	≈ 45	Teile, die elektr. Strom führen und/oder Wärme leiten, wie Kontakte, Lötschuhe u.a.
2.0492.01	G-CuZn15Si4 *	DIN 1709	Gußzustand	≥ 145	≥ 410	≈ 20	≈ 108	3 bis 5	Meerwasserbeständig, sehr gut gießbar, magnetische Perme- abilität ≤ 1,01; für ver- wickelte Elektrobauteile
2.0980.01			Gußzustand	≥ 275	≥ 620	≈ 6		2,8 bis 3,5	Meerwasser-, chemisch
2.0980.99	G-CuAl10Ni	DIN 1714	Sonder a)	≥ 355	≥ 655	≈ 8	≈ 41	2,8 bis 3,5	und kavitationsbestän- dig, für Heißdampf- armaturen, Flugzeug- teile, Schneckenräder
2.0980.99			Sonder b)	≥ 420	≥ 715	≈ 7			

^{* =} bevorzugte Sorte

7 Ergänzende Hinweise und Daten

Abmessungen: Linear bis etwa 1250 mm (600 x 800 x 1200 mm) Stückgewichte:

Für Stahlguß, Gußeisen und Buntmetallguß 1 g bis etwa 200 kg, für Leichtmetallguß 1 g bis etwa 75 kg.

Große Abmessungen und große Gewichte werden nur von einzelnen Feingießern hergestellt. Gleiches gilt für das Schmelzen und Gießen im (Hoch-)Vakuum, mit dem nur einzelne Feingießer arbeiten.

7.1 Einlegeteile

aus bestimmten Werkstoffen können mit Nichteisen-Metallen umgossen werden, siehe auch Punkte 5.1 und 6. Das sollte jedoch mit dem Feingießer detailliert vereinbart werden wegen: Kernmarken, Formschlüssigkeit, Formbrenntemperatur u. a.

7.2 Nachdichten und Abdichten

Wird in besonderen Fällen gefordert, die Gefügedichtheit noch zu steigern, dann können die Gußstücke heißisostatisch gepreßt oder imprägniert werden.

7.2.1 Heißisostatisch pressen

Beim HIP-Verfahren werden die zu behandelnden Feingußstücke in einem Autoklaven unter Schutzgas (Argon), hohen Drücken und Temperaturen ausgesetzt. Dabei werden die Poren durch Fließen des Werkstoffs im Mikrobereich so geschlossen, daß sie auch im Röntgenbild nicht mehr zu erkennen sind. Offene Poren können damit nicht geschlossen werden.

7.2.2 Imprägnieren

Hierbei erfolgt das Abdichten offener Porositäten durch Tränken der Gußstücke, z. B. mit flüssigen Kunststoffen oder Mitteln auf Wasserglasbasis. Imprägniert wird mit der Vakuumdruck-Methode, die ein optimales Infiltrieren des Abdichtmittels sichert. Imprägniert werden vorwiegend Elektronik- und ähnliche Pumpengehäuse, die gas- und druckdicht sein müssen.

7.3 Gewähr

Nur der betreffende Feingußlieferant kann technische Daten gewährleisten und/oder Abnahmebedingungen akzeptieren. Die Prüf- und Abnahmevorschriften sind mit dem Feingießer zu vereinbaren und müssen geklärt sein, bevor die Fertigung beginnt.

7.4 Quellen und weiterführende Informationen

- In der ZGV-Broschüre Feinguß für alle Industriebereiche aus der Fachreihe "konstruieren & gießen" ist das Feingießverfahren ausführlich dargestellt; sie war wesentliche Quelle für den in diesem Merkblatt dargestellten Inhalt. Die Broschüre enthält darüber hinaus konkrete Hinweise auf Konstruieren, Gestalten und zahreiche Beispiele für die hohe Wirtschaftlichkeit des Feingusses. Herausgeber: Zentrale für Gußverwendung, Düsseldorf, (vergriffen).
- <u>VDG-Merkblatt P 690</u> "Feinguß-Maßtoleranzen, Oberflächen, Bearbeitungszugaben", März 1999. Herausgeber: Verein Deutscher Giessereifachleute, Düsseldorf.
- VDG-Merkblatt P 695, Technische Lieferbedingungen für Feinguß, Teil 1: Allgemeine Bedingungen; Teil 2: Gütestufen aufgrund zerstörungsfreier Prüfungen, August 1998. Herausgeber: Verein Deutscher Giessereifachleute, Düsseldorf
- Werkstoffblätter und Firmenprospekte der deutschen Feingießer informieren über die jeweiligen Herstellprogramme der Feingießereien.
- <u>Stahl-Eisen-Liste</u>. 10. Auflage. Verein Deutscher Eisenhüttenleute, Düsseldorf 1999.

7.5 Abkürzungen

LW: Werkstoff-Handbuch der Deutschen

Luftfahrt

SEW: Stahl-Eisen-Werkstoffblatt WL: Werkstoff-Leistungsblatt

WW: Werkstoff-Handbuch der Wehrtechnik